What is the simplified value of $$[{\frac{cosA}{(1-tanA)}+{\frac{sinA}{(1-cotA)}}}]^2$$ ?
Expression : $$[{\frac{cosA}{(1-tanA)}+{\frac{sinA}{(1-cotA)}}}]^2$$
= $$[(\frac{cosA}{1-\frac{sinA}{cosA}})+(\frac{sinA}{1-\frac{cosA}{sinA}})]^2$$
= $$[(\frac{cos^2A}{cosA-sinA})-(\frac{sin^2A}{cosA-sinA})]^2$$
= $$(\frac{cos^2A-sin^2A}{cosA-sinA})^2$$
= $$(\frac{(cosA-sinA)(cosA+sinA)}{cosA-sinA})^2$$
= $$(cosA+sinA)^2$$
= $$cos^2A+sin^2A+2sinAcosA$$
= $$1+sin2A$$
=> Ans - (B)
Create a FREE account and get: