Given : $$tanA=\frac{1}{2}$$ and $$tanB=\frac{1}{3}$$
Now, $$tan2A=\frac{2tanA}{1-tan^2A}$$
=> $$tan2A=(2\times\frac{1}{2})\div(1-\frac{1}{4})$$
=> $$tan2A=1\div\frac{3}{4}$$
=> $$tan2A=\frac{4}{3}$$
To find : $$tan(2A+B)$$
= $$\frac{tan2A+tanB}{1-tan2A.tanB}$$
= $$(\frac{4}{3}+\frac{1}{3})\div(1-(\frac{4}{3})(\frac{1}{3}))$$
= $$(\frac{5}{3})\div(1-\frac{4}{9})$$
= $$(\frac{5}{3})\div(\frac{9-4}{9})$$
= $$\frac{5}{3}\times\frac{9}{5}=3$$
=> Ans - (B)
Create a FREE account and get: