Given : $$cotA=\frac{sinB}{1-cosB}$$ -----------(i)
To find : $$cot2A=\frac{cot^2A-1}{2cotA}$$
Substituting value from equation (i),
=Â $$[(\frac{sinB}{1-cosB})^2-1]\div[2(\frac{sinB}{1-cosB})]$$
= $$(\frac{sin^2B-(1-cosB)^2}{(1-cosB)^2})\times(\frac{(1-cosB)}{2sinB})$$
= $$\frac{sin^2B-(1-cosB)^2}{2sinB(1-cosB)}$$
= $$\frac{sin^2B-(1+cos^2B-2cosB)}{2sinB(1-cosB)}$$
= $$\frac{sin^2B-1-cos^2B+2cosB}{2sinB(1-cosB)}$$
Using, $$sin^2\theta-1=-cos^2\theta$$
= $$\frac{-2cos^2B+2cosB}{2sinB(1-cosB)}$$
= $$\frac{2cosB(1-cosB)}{2sinB(1-cosB)}$$
= $$\frac{cosB}{sinB}=cotB$$
=> Ans - (C)
Create a FREE account and get: