In how many ways 9 friends - Alok, Badal, Carol, Dorothy, Emily, Frank, Govind, Harish and Indivar; be divided equally into 3 groups?
Group 1 Can be selected in $$C^9_3 = \frac{9\times8\times7}{1\times2\times3}=84$$ ways
Group 2 Can be selected in $$C^6_3 = \frac{6\times5\times4}{1\times2\times3}=20$$ ways
Group 3 Can be selected in $$C^3_3 = 1$$ way
=> Total number of ways = $$\frac{84\times20\times1}{3!}$$
= $$14\times20=280$$ ways
=> Ans - (C)
Create a FREE account and get: