Find the value of $$\log_2 \log_2 \log_3 \log_3 27^3$$
Expression : $$\log_2 \log_2 \log_3 \log_3 27^3$$
= $$\log_2 \log_2 \log_3 \log_3 (3)^9$$
= $$\log_2 \log_2 \log_3 9$$
= $$\log_2 \log_2 \log_3 (3)^2$$
= $$\log_2 \log_2 2$$
= $$\log_2 1=0$$
=> Ans - (A)
Create a FREE account and get: