Question 94

Find the value of $$\log_2 \log_2 \log_3 \log_3 27^3$$

Solution

Expression : $$\log_2 \log_2 \log_3 \log_3 27^3$$

= $$\log_2 \log_2 \log_3 \log_3 (3)^9$$

= $$\log_2 \log_2 \log_3 9$$

= $$\log_2 \log_2 \log_3 (3)^2$$

= $$\log_2 \log_2 2$$

= $$\log_2 1=0$$

=> Ans - (A)

Video Solution

video

Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App