Question 90

If $$x^{abc} = x^a.x^b.x^c$$, where $$a, b, cĀ  andĀ  x$$ are all positive integers, then what is the value of $$(a + b + c)^2$$?

Solution

GivenĀ :Ā $$x^{abc} = x^a.x^b.x^c$$

=>Ā $$x^{abc} = x^{(a+b+c)}$$

=> $$a+b+c=abc$$

$$\because$$ $$a,b,c$$ are all positive integers, the only numbers that can satisfy above equation areĀ : $$a=1,b=2,c=3$$

To findĀ : $$(a+b+c)^2=(6)^2=36$$

=> Ans - (D)

Video Solution

video

Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App