If $$x^{abc} = x^a.x^b.x^c$$, where $$a, b, cĀ andĀ x$$ are all positive integers, then what is the value of $$(a + b + c)^2$$?
GivenĀ :Ā $$x^{abc} = x^a.x^b.x^c$$
=>Ā $$x^{abc} = x^{(a+b+c)}$$
=> $$a+b+c=abc$$
$$\because$$ $$a,b,c$$ are all positive integers, the only numbers that can satisfy above equation areĀ : $$a=1,b=2,c=3$$
To findĀ : $$(a+b+c)^2=(6)^2=36$$
=> Ans - (D)
Create a FREE account and get: