If $$\mid x - 6 \mid = 5$$ and $$\mid 3y - 12 \mid = 6$$ then the maximum value of $$\frac{x}{y} =$$
Solution
$$\mid x - 6 \mid = 5$$ |x-6|=5
if x-6 > 0 ; x>6
so the mod function will become, x-6 = 5
x=11......x max.
If x-6 < 0 ; x<6
so the mod function will become, -(x-6) = 5
6 -x = 5
x=6-5 =1 .....x min
Similarly for y
$$\mid 3y - 12 \mid = 6$$ |3y-12|= 6
If 3y-12 < 0, y < 4
so the mod function will become, - (3y-12) = 6
12 -3y = 6 ; y =2 ........y min.
If 3y-12 > 0, y > 4
so the mod function will become, (3y-12) = 6
3y = 12+6 = 18
y = 6 .......y max
For,maximum value of $$\frac{x}{y} =$$ Numerator (x) should be maximum and denominator (y) should be minimum.
$$\frac{x\ \left(\max\right)}{y\left(\min\right)}\ =\ \frac{11}{2\ }$$ Answer
Create a FREE account and get: