Question 81

$$\sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{15}} =$$

Solution

$$\sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{15}} =$$ =  $$\sqrt{2^2+\left(-\sqrt{\ 5}\right)^2+\left(2\sqrt{\ 3}\right)^2+2\cdot2\cdot-\sqrt{5}+2\cdot\left(-\sqrt{\ 5}\right)\left(2\sqrt{3}\right)+2\cdot\left(2\sqrt{3}\right)\cdot2}=$$

Which is in the form $$a^2+b^2+c^2+2ab+2bc+2ca\ =\ \left(a+b+c\right)^2$$

hence $$\sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{15}} =$$ = $$2-\sqrt{\ 5}+2\sqrt{\ 3}$$


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App