$$\sqrt{18 + x \sqrt{2}} = \sqrt{12} + \sqrt{6} \Rightarrow x =$$
Take square both side
$$({\sqrt{18 + x \sqrt{2}}})^2 = ({\sqrt{12} + \sqrt{6}})^2 \Rightarrow x =$$
$${18 + x \sqrt{2}} = 12 + 6 + 2 * \sqrt{12} * \sqrt{6} \Rightarrow x =$$
$${18 + x \sqrt{2}} = 18 + 2 * \sqrt{6} * \sqrt{2} * \sqrt{6} \Rightarrow x =$$
18 will be eliminated from both the sides.
$${x \sqrt{2}} = 2 * \sqrt{6} * \sqrt{2} * \sqrt{6}$$
x =2 * 6
x = 12
Hence, option C is correct.
Create a FREE account and get: