Sign in
Please select an account to continue using cracku.in
↓ →
For all real values of x, $$\dfrac{3x^{2} - 6x + 12}{x^{2} + 2x + 4}$$ lies between 1 and k, and does not take any value above k. Then k equals...........
Correct Answer: 9
Let $$\dfrac{3x^2-6x+12}{x^2+2x+4}=y$$
$$3x^2-6x+12=x^2y+2xy+4y$$
$$x^2\left(y-3\right)+2x\left(y+3\right)+4y-12=0$$
For the real value of x, $$D\ge0$$
$$b^2-4ac\ge\ 0$$
$$\left[2\left(y+3\right)\right]^2-4\left(y-3\right)\left(4y-12\right)\ge\ 0$$
$$4\left(y^2+6y+9\right)-4\left(4y^2-24y+36\right)\ge\ 0$$
$$-12y^2+120y-108\ge\ 0$$
$$12y^2-120y+108\le\ \ 0$$
$$3y^2-30y+27\le\ \ 0$$
$$y^2-10y+9\le\ \ 0$$
$$\left(y-1\right)\left(y-9\right)\le\ 0$$
$$y\in\ \left[1,9\right]$$
Therefore, k = 9
Create a FREE account and get: