Question 79

The three sides of a right-angled triangle have integral lengths and also form an arithmetic progression. A possible length of one of the sides is

Solution

Let the three sides be $$(a-d),a,(a+d)$$ units

In a right angled triangle,

=> $$(a-d)^2+(a)^2=(a+d)^2$$

=> $$2a^2+d^2-2ad=a^2+d^2+2ad$$

=> $$a^2=4ad$$

=> $$a=4d$$

Thus, the three sides are : $$3d,4d,5d$$

Thus, the sides are multiples of either 3,4 or 5. Thus, only possible side among the options is 56.

=> Ans - (D)


cracku

Boost your Prep!

Download App