Let $$\triangle$$ be the area of the circumcircle of a right angled triangle ABC with $$\angle B$$ = 90°. Let $$\triangle_1 and \triangle_2$$ be areas of the two circle with diameters BC and BA respectively. Then
Let say ,a be the length of the side conjugate to the right angle .
so,length of the diameter of the circle is
$$=√2a$$.
so,radius$$=(√2/2)a$$.
so,$$∆=πa^2/2$$.
Now,∆1=∆2=
$$π(a/2)^2=πa^2/4.$$
So,∆1+∆2=$$πa^2/2.$$
So,∆=∆1+∆2.
C is correct choice.
Create a FREE account and get: