Given, $$2^{2n-1}=\frac{1}{8^{n-3}}$$
$$\Rightarrow$$ $$2^{2n-1}=\frac{1}{2^{3\left(n-3\right)}}$$
$$\Rightarrow$$ $$2^{2n-1}=2^{-3\left(n-3\right)}$$
As bases are equal, equating powers
$$2n-1=-3\left(n-3\right)$$
$$\Rightarrow$$ $$2n-1=-3n+9$$
$$\Rightarrow$$ $$5n=10$$
$$\Rightarrow$$ $$n=2$$
$$\therefore\ $$ $$2^{n-2}=2^{2-2}=2^0=1$$
Create a FREE account and get: