$$\frac{\left(x + \frac{1}{y}\right)^a . \left(x - \frac{1}{y}\right)^b}{\left(y + \frac{1}{x}\right)^a . \left(y - \frac{1}{x}\right)^b} =$$
$$\left(\frac{x + \frac{1}{y}}{y + \frac{1}{x}}\right)^a\left(\frac{x - \frac{1}{y}}{y - \frac{1}{x}}\right)^b$$
$$= \left(\frac{xy + 1}{xy + 1} \times \frac{x}{y}\right)^a \left(\frac{xy - 1}{xy - 1} \times \frac{x}{y}\right)^b$$
$$= \left(\frac{x}{y}\right)^a \left(\frac{x}{y}\right)^b$$
$$= \left(\frac{x}{y}\right)^{a+b}$$
Hence the answer is option A
Create a FREE account and get: