In a circle, chords AD and BC meet at a point E outside the circle. If $$\angle$$BAE = 76$$^\circ$$ and $$\angle$$ADC= 102$$^\circ$$Â , then $$\angle$$AEC is equal to:
In cyclic quadrilateral ABCD, sum of opposite angles = 180$$^\circ$$
$$=$$> Â $$\angle$$BAE +Â $$\angle$$BCD =Â 180$$^\circ$$
$$=$$> Â 76$$^\circ$$ +Â $$\angle$$BCD = 180$$^\circ$$
$$=$$> Â Â $$\angle$$BCD =Â 104$$^\circ$$
From the figure,
$$\angle$$ADC +Â $$\angle$$EDC =Â 180$$^\circ$$
$$=$$>Â 102$$^\circ$$ +Â $$\angle$$EDC = 180$$^\circ$$
$$=$$> Â $$\angle$$EDC =Â 78$$^\circ$$
$$\angle$$BCD + $$\angle$$ECD = 180$$^\circ$$
$$=$$> 104$$^\circ$$ + $$\angle$$ECD = 180$$^\circ$$
$$=$$> $$\angle$$ECD = 76$$^\circ$$
In $$\triangle\ $$CDE,
$$\angle$$DEC +Â $$\angle$$ECD +Â $$\angle$$EDC =Â 180$$^\circ$$
$$=$$> Â $$\angle$$AEC +Â 76$$^\circ$$ +Â 78$$^\circ$$ =Â 180$$^\circ$$
$$=$$> Â $$\angle$$AEC + 154$$^\circ$$ =Â 180$$^\circ$$
$$=$$> Â $$\angle$$AEC =Â 26$$^\circ$$
Hence, the correct answer is Option C
Create a FREE account and get: