If $$x^{2a} = y^{2b} = z^{2c}$$ ≠ 0 and $$x^2 = yz$$, then the value of $$\frac{ab + bc + ca}{bc}$$ is:
$$x^{2a} = y^{2b} = z^{2c}$$ = k
$$x^{2a} = k$$
$$x = (k)^{\frac{1}{2a}}$$
Likewise,
$$y = (k)^{\frac{1}{2b}}$$
$$z = (k)^{\frac{1}{2c}}$$
Now,
$$x^2 = yz$$
$$((k)^{\frac{1}{2a}})^2 = (k)^{\frac{1}{2b}}(k)^{\frac{1}{2c}}$$
$$(k)^{\frac{1}{a}} = (k)^{\frac{1}{2b} + \frac{1}{2c}}$$
$$\frac{1}{a} = \frac{1}{2b} + \frac{1}{2c}$$
By adding 1/2a both sides,
$$\frac{1}{a} + \frac{1}{2a} = \frac{1}{2a} + \frac{1}{2b} + \frac{1}{2c}$$
$$\frac{3}{2a} = \frac{ab + bc + ac}{2abc}$$
$$\frac{ab + bc + ac}{bc} = 3$$
Create a FREE account and get: