If $$\sqrt x + \frac{1}{\sqrt x} = 2\sqrt2, then x^2 + \frac{1}{x^2}$$ is equal to:
Given that,
$$\sqrt x + \frac{1}{\sqrt x} = 2\sqrt2$$
Taking the square of the both side,
$$\Rightarrow (\sqrt x + \frac{1}{\sqrt x})^2 = (2\sqrt2)^2$$
$$\Rightarrow (\sqrt x)^2 +( \frac{1}{\sqrt x})^2+2 = (2\sqrt2)^2$$
$$\Rightarrow x +\dfrac{1}{x}+2 = 8$$
$$\Rightarrow x +\dfrac{1}{x} = 6$$-------------------(i)
Again taking square of the equation (i)
$$\Rightarrow (x +\dfrac{1}{x})^2 = 6^2$$
$$\Rightarrow x^2+\dfrac{1}{x^2}+2=36$$
$$\Rightarrow x^2+\dfrac{1}{x^2}=36-2=34$$
$$\Rightarrow x^2+\dfrac{1}{x^2}=34$$
Create a FREE account and get: