Question 75

If $$\sec \theta = 3 x  and  \tan \theta = \frac{3}{x}$$, (x ≠ 0)then the value of $$9\left(x^2 - \frac{1}{x^2}\right)$$ is:

Solution

Given, $$\sec\theta=3x$$ and $$\tan\theta=\frac{\ 3}{x}$$

We know that,  $$\sec^2\theta-\tan^2\theta=1$$

$$=$$>  $$\left(3x\right)^2-\left(\frac{\ 3}{x}\right)^2=1$$

$$=$$>   $$9x^2-\frac{\ 9}{x^2}=1$$

$$=$$>   $$9\left(x^2-\frac{\ 1}{x^2}\right)=1$$

Hence, the correct answer is Option D


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App