In the given figure, if PQ = 13 cm and PR = 12 cm, then the value of $$\sin \theta + \tan \theta =$$ ?
Given, $$PQ$$ = 13 cm and $$PR$$ = 12 cm
By Pythagoras theorem,
$$QR^2+PR^2=PQ^2$$
$$=$$> Â $$QR^2+12^2=13^2$$
$$=$$> Â $$QR^2+144=169$$
$$=$$> Â $$QR^2=25$$
$$=$$> Â $$QR=5$$ cm
From the right angled traingle $$PQR$$,
$$\sin\theta\ =\frac{PR}{PQ}$$
$$=$$> $$\sin\theta\ =\frac{5}{13}$$
$$\tan\theta\ =\frac{PR}{QR}$$
$$=$$>Â $$\tan\theta\ =\frac{5}{12}$$
$$\therefore\ \sin\theta\ +\tan\theta\ =\frac{12}{13}+\frac{12}{5}=\frac{60+156}{65}=\frac{216}{65}$$
Hence, the correct answer is Option B
Create a FREE account and get: