A, B and C are three points on a circle such that the angles subtended by the chord AB and AC at the centre O are $$110^\circ$$ and $$130^\circ$$, respectively. Then the value of $$\angle BAC$$ is:
In $$\triangle$$ OBA,
$$\angle O = 110 \degree$$
$$\angle OBA = \angle OAB$$ (OB = OA = radius)
$$\angle O +Â \angle OBA +Â \angle OAB = 180\degree$$
$$110 + \angle OAB + \angle OAB = 180\degree$$
$$2 \angle OAB = 70\degree$$
$$\angle OAB = 35\degree$$
In $$\triangle$$ OAC,
$$\angle O = 130 \degree$$
$$\angle OAC = \angle OCA$$ (OA = OC = radius)
$$\angle O + \angle OACÂ + \angle OCA = 180\degree$$
$$130 + \angle OAC + \angle OAC = 180\degree$$
$$2 \angle OAC = 50\degree$$
$$ \angle OAC = 25\degree$$
Now,
$$\angle BAC =Â \angle OAB +Â \angle OAC =Â 35 \degree +Â 25\degree = 60\degree$$
Create a FREE account and get: