The angle of elevation of the top of a tower from a point A on the ground is 30˚. On moving a distance of 20 metres towards the foot of the tower to a point B, the angle of elevation increases to 60˚. The height of the tower in metres is
Given : CD is the tower and AB = 20 m
To find : CD = $$h$$ = ?
Solution : Let DB = $$x$$ m
In $$\triangle$$ BCD,
=> $$tan(60^\circ)=\frac{CD}{DB}$$
=> $$\sqrt{3}=\frac{h}{x}$$
=> $$x=\frac{h}{\sqrt{3}}$$ -----------(i)
Again, in $$\triangle$$ ACD,
=> $$tan(30^\circ)=\frac{CD}{AD}$$
=> $$\frac{1}{\sqrt{3}}=\frac{h}{x+20}$$
=> $$x+20=\sqrt{3}h$$
Substituting value of $$x$$ from equation (i), we get :
=> $$\sqrt{3}h-\frac{h}{\sqrt{3}}=20$$
=> $$\frac{2h}{\sqrt{3}}=20$$
=> $$h=20 \times \frac{\sqrt{3}}{2}$$
=> $$h=10\sqrt{3}$$ m
=> Ans - (C)
Create a FREE account and get: