Vertices A, B, C and D of a quadrilateral ABCD lie on a circle. $$\angle$$A is three times $$\angle$$C and $$\angle$$D is two times $$\angle$$B. What is the difference between the measures of $$\angle$$D and $$\angle$$C?
Given,
$$\angle$$A is three times $$\angle$$C and $$\angle$$D is two times $$\angle$$B.
$$\angle$$A = 3$$\angle$$C.......(1)
$$\angle$$D = 2$$\angle$$B.......(2)
In a cyclic quadrilateral, opposite angles are supplementary.
$$\angle$$A + $$\angle$$C = 180$$^\circ$$ and $$\angle$$B + $$\angle$$D = 180$$^\circ$$
$$\angle$$A + $$\angle$$C = 180$$^\circ$$
3$$\angle$$C +Â $$\angle$$C =Â 180$$^\circ$$Â [From (1)]
4$$\angle$$C =Â 180$$^\circ$$
$$\angle$$C = 45$$^\circ$$
$$\angle$$A =Â 3$$\angle$$C =Â 135$$^\circ$$
$$\angle$$B + $$\angle$$D = 180$$^\circ$$
$$\angle$$B + 2$$\angle$$B = 180$$^\circ$$Â [From (2)]
3$$\angle$$B = 180$$^\circ$$
$$\angle$$B = 60$$^\circ$$
$$\angle$$D = 2$$\angle$$B = 120$$^\circ$$
Difference between the measures of $$\angle$$D and $$\angle$$C =Â 120$$^\circ$$ -Â 45$$^\circ$$
=Â 75$$^\circ$$
Hence, the correct answer is Option C
Create a FREE account and get: