$$\triangle$$ABC $$\sim$$ $$\triangle$$QPR and AB = 8 cm, BC = 12 cm and AC = 6 cm. If ar($$\triangle$$ABC) : ar($$\triangle$$PQR) = 16 : 25, then RQ is equal to:
If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.
$$\frac{\left(area\ of\ \triangle\ ABC\right)}{area\ of\ \triangle\ PQR\ }=\left(\frac{BC}{QR}\right)^2$$
$$\frac{16}{25}=\left(\frac{AC}{QR}\right)^2$$
$$\frac{6}{QR}=\frac{4}{5}$$
$$QR=\frac{30}{4}$$
$$QR=7.5$$
Create a FREE account and get: