The volumes of spheres A and B are in the ratio 125 : 64. If the sum of radii of A and B is 36 cm,then the surface area (in $$cm^{2}$$) of A is:
The ratio of the volume of the Sphere A and B = 125 : 64
$$\frac{4}{3} \times \pi \times r_a^3 :Â $$\frac{4}{3} \times \pi \times r_b^3$$ = 125 : 64
$$r_a^3 :Â r_b^3$$ = 125 : 64
$$(\frac{r_a}{r_b})^3 = \frac{125}{64}$$
$$\frac{r_a}{r_b} =Â \frac{5}{4}$$
$$4r_a = 5r_b$$ ---(1)
($$r_a + r_b = 36$$)
Put the value of $$r_b$$ in eq (1),
$$4r_a = 5(36 - r_a)$$
$$4r_a +Â 5r_a = 180$$
$$r_a$$ = 180/9 = 20 cm
Surface area of the A = $$4 \pi r^2$$
= $$4 \times \pi \times 20 \times 20 = 1600\pi$$
Create a FREE account and get: