The area of $$\triangle$$ ABC is 44 $$cm^2$$. If D is the midpoint of BC and E is the mid point of AB,then the area (in $$cm^2$$) of $$\triangle$$BDE is:
D is the midpoint of BC and E is the mid point of AB.
Let the BE be x cm.
AB = 2BE = 2x cm
$$\frac{AB}{BE} = \frac{2x}{x} = \frac{2}{1}$$Â
$$\angle B$$ is common in both triangle.
$$\triangle$$ ABC ~Â $$\triangle$$BDE
So,
$$\frac{area of \triangle ABC}{area of \triangle BDE} = (\frac{AB}{BE})^2$$
$$\frac{44}{area of \triangle BDE} = (\frac{2}{1})^2$$
$$\frac{44}{area of \triangle BDE} = (\frac{4}{1})$$
Area of $$\triangle$$ BDE = 11Â $$cm^2$$.
Create a FREE account and get: