If $$\cos x = \frac{-1}{2} and \pi < x < \frac{3\pi}{2}$$, then the value of $$2 \tan^2 x + 3 \cosec^2 x$$ is:
Given, $$\cos x = \frac{-1}{2}$$
$$=$$> $$\sec x=-2$$
$$\therefore\ $$ $$2\tan^2x+3\operatorname{cosec}^2x=2\left(\sec^2x-1\right)+\frac{3}{\sin^2x}$$
$$=2\left(\sec^2x-1\right)+\frac{3}{1-\cos^2x}$$
$$=2\left(\left(-2\right)^2+1\right)+\frac{3}{1-\left(\frac{-1}{2}\right)^2}$$
$$=2\left(4-1\right)+\frac{3}{1-\frac{1}{4}}$$
$$=2\left(3\right)+\frac{3}{\frac{3}{4}}$$
$$=6+4$$
$$=10$$
Hence, the correct answer is Option A
Create a FREE account and get: