If $$x^4 + x^2y^2 + y^4 = 21$$ and $$x^2 + xy + y^2 = 7$$, then the value of $$\left(\frac{1}{x^2} + \frac{1}{y^2}\right)$$ is:
$$x^4 + x^2y^2 + y^4 = 21$$
=Â $$x^4 + x^2y^2 + y^4 +Â x^2y^2Â -Â x^2y^2= 21$$
= $$x^4 + 2x^2y^2 + y^4 - x^2y^2= 21$$
$$(\because (a + b)^2 = a^2 + 2ab +Â b^2)$$
= $$(x^2 +Â y^2)^2 = 21 +Â x^2y^2$$ ----(1)
$$x^2 + xy + y^2 = 7$$
$$x^2 + y^2 = 7 - xy$$ ---(2)
From eq(1) and (2),
$$(7 - xy)^2 = 21 + x^2y^2$$
$$49 +Â x^2y^2 - 14xy = 21 +Â x^2y^2$$
14xy = 49 - 21
xy = 28/14 = 2
From eq(2),
$$x^2 + y^2 = 7 - 2$$
$$x^2 + y^2 = 5$$
Now,
$$\left(\frac{1}{x^2} + \frac{1}{y^2}\right)$$
= $$\frac{x^2 + y^2}{x^2y^2}$$
= $$\frac{5}{2^2}$$Â
= $$\frac{5}{4}$$
Create a FREE account and get: