The value of $$\frac{1}{\sec x - \tan x} - \frac{1}{\cos x}, 0^\circ < x < 90^\circ,$$ is equal to:
$$\frac{1}{\sec x - \tan x} - \frac{1}{\cos x}$$
simplifying the sum secx-tanx
use the identity tanx=$$\frac{sinx}{cosx}$$
then use the identity secx=$$\frac{1}{cosx}$$
$$\frac{1}{1÷cosx-sinx÷cosx}$$ - $$\frac{1}{cosx}$$
$$\frac{1}{1-sinx÷cosx}$$ - $$\frac{1}{cosx}$$
$$\frac{cosx}{1-sinx}$$ - $$\frac{-1}{cosx}$$
order factor for (1-sinx)cosx
$$\frac{cos^2x-1+sinx}{cosx(1-sinx)}$$
use the identity
$$\cos^2 \theta +\sin^2 \theta$$=1
$$\sin^2 \theta$$=1-$$\cos^2 \theta$$
-$$\sin^2 \theta$$ = -(1-$$\cos^2 \theta$$)
-$$\sin^2 \theta$$= -1+$$\cos^2 \theta$$
where θ is replaced by x
Hence = $$\frac{-1+cos^2x+sinx}{cosx(1-sinx)}$$
= $$\frac{-sin^2x+sinx}{cosx(1-sinx)}$$
. = $$\frac{sinx(1-sinx)}{cosx(1-sinx)}$$
cancel (1-sinx)(1-sinx)
then =$$\frac{sinx}{cosx}$$
by using the identity we know that tanx=$$\frac{sinx}{cosx}$$
Create a FREE account and get: