$$\triangle$$ABC $$\sim$$ $$\triangle$$EDF and ar($$\triangle$$ABC) : ar($$\triangle$$DEF) = 4 : 9. If AB = 6 cm, BC = 8 cm and AC = 10 cm,then DF is equal to:
We haveÂ
ABC similar to EDFÂ
Now ratio of areas of similar triangles = (Square of ratio of sides )Â
Therefore we can sayÂ
The ratio of sides of ABC and EDF will be $$\sqrt{\ \frac{4}{9}\ }=\ \frac{2}{3}$$
Now we getÂ
BC : DF = 2:3
Substituting we get DF = 12
Create a FREE account and get: