If $$5 \cos \theta - 12 \sin \theta = 0$$, then what is the value of $$\frac{1 + \sin \theta + \cos \theta}{1 - \sin \theta + \cos \theta}$$
$$5 \cos \theta - 12 \sin \theta = 0$$
$$tan \theta = \frac{5}{12}$$
We know that $$tan \theta = \dfrac{perpendicular}{base}$$ so,
By the triplet 5-12-13,
Hypotenuse = 13
$$sin \theta = \dfrac{5}{13}$$
$$cos \theta = \dfrac{12}{13}$$
$$\dfrac{1 + \sin \theta + \cos \theta}{1 - \sin \theta + \cos \theta}$$
= $$\dfrac{1 + \dfrac{5}{13} + \dfrac{12}{13}}{1 - \dfrac{5}{13} + \dfrac{12}{13}}$$
= $$\dfrac{30}{20} = \dfrac{3}{2}$$
Create a FREE account and get: