In a triangle ABC, DE is parallel to BC; AD = a, DB = a + 4, AE = 2a + 3, EC = 7a. What is the value of 'a’ if a>0 ?
$$\triangle ADE and \triangle ABC are similar triangle.
($$\because all \angle A is common and \angle B = \angle D & \angle C = \angle E$$)
By the properties,
$$\frac{AB}{AD} = \frac{AC}{AE}$$
$$\frac{AB}{a} = \frac{AC}{2a + 3}$$
$$\frac{AD + DB}{a} = \frac{AE + EC}{2a + 3}$$
$$\frac{a + a + 4}{a} = \frac{2a + 3 + 7a}{2a + 3}$$
$$\frac{2a + 4}{a} = \frac{9a + 3}{2a + 3}$$
{2a + 4}{2a + 3} = {a}{9a + 3}
$$4a^2 + 14a + 12 = 9a^2 + 3a$$
$$5a^2 - 11a - 12 = 0$$
$$5a^2 - 15a + 4a - 12 = 0$$
$$5a(a - 3)+ 4(a - 3) = 0$$
(5a + 4)(a - 3) = 0
a = -4/5 and a = 3
$$\because$$ a>0 so, a = 3
Create a FREE account and get: