In $$\triangle$$ABC,the bisectors of $$\angle$$B and $$\angle$$C meet at O, inside the triangle. If $$\angle$$BOC = $$106^\circ$$, then the measure of $$\angle$$A is:
From the figure,
OB and OC are angular bisectors of $$\angle$$B and $$\angle$$C
$$=$$> $$\angle$$OBC = $$\frac{\angle \text{B}}{2}$$ and $$\angle$$OCB = $$\frac{\angle \text{C}}{2}$$
$$=$$> $$\angle$$B = 2$$\angle$$OBC and $$\angle$$C = 2$$\angle$$OCB
In $$\triangle$$OBC,
$$\angle$$BOC + $$\angle$$OBC + $$\angle$$OCB = 180$$^{\circ\ }$$
$$=$$> 106$$^{\circ\ }$$ + $$\angle$$OBC + $$\angle$$OCB = 180$$^{\circ\ }$$
$$=$$> $$\angle$$OBC + $$\angle$$OCB = 180$$^{\circ\ }$$- 106$$^{\circ\ }$$
$$=$$> $$\angle$$OBC + $$\angle$$OCB = 74$$^{\circ\ }$$ ..................(1)
$$\angle$$A + $$\angle$$B + $$\angle$$C = 180$$^{\circ\ }$$
$$=$$> $$\angle$$A + 2$$\angle$$OBC + 2$$\angle$$OCB = 180$$^{\circ\ }$$
$$=$$> $$\angle$$A + $$2\left(\angle \text{OBC}+\angle \text{OCB}\right)$$ = 180$$^{\circ\ }$$
$$=$$> $$\angle$$A + $$2\left(74^{\circ\ }\right)$$ = 180$$^{\circ\ }$$
$$=$$> $$\angle$$A = 180$$^{\circ\ }$$- 148$$^{\circ\ }$$
$$=$$> $$\angle$$A = $$32^\circ$$
Hence, the correct answer is Option A
Create a FREE account and get: