If M is the mid-point of the side BC of $$\triangle$$ABC, and the area of $$\triangle$$ABM is $$18 cm^2$$, then the area of $$\triangle$$ABC is:
Let AD is the perpendicular to BC
Given,
Area of the $$\triangle$$ABM =Â $$18 cm^2$$
$$=$$> Â $$\frac{1}{2}\times \text{AD}\times \text{BM}$$ =Â $$18 cm^2$$
M is the mid-point of BC
$$=$$>Â BM = MC
Area of the $$\triangle$$ACM = $$\frac{1}{2}\times \text{AD}\times \text{MC}=\frac{1}{2}\times \text{AD}\times \text{BM}=18cm^2$$
$$\therefore\ $$Area of the $$\triangle$$ABC = Area of the $$\triangle$$ABM + Area of the $$\triangle$$ACM = $$18+18=36cm^2$$
Hence, the correct answer is Option A
Create a FREE account and get: