The straight line 2x - 3y = 1 divides the circular region $$x^2 + y^2 \leq 6$$ into two parts. If
$$S = \left\{\left(2, \frac{3}{4}\right), \left(\frac{5}{2}, \frac{3}{4}\right), \left(\frac{1}{4}, -\frac{1}{4}\right), \left(\frac{1}{8}, \frac{1}{4}\right)\right\}$$,
then the number of point(s) in S lying inside the smaller part is
Correct Answer: 2
Create a FREE account and get: