If $$\sin^2 \theta - \cos^2 \theta - 3 \sin \theta + 2 = 0, 0^\circ < \theta < 90^\circ$$, then what is the value of $$\frac{1}{\sqrt{\sec \theta - \tan \theta}}$$ is:
$$\sin^2\theta-\cos^2\theta-3\sin\theta+2=0$$
$$\sin^2\theta-\left(1-\sin^2\theta\ \right)-3\sin\theta+2=0$$
$$2\sin^2\theta-3\sin\theta+1=0$$
$$2\sin^2\theta-2\sin\theta-\sin\theta\ +1=0$$
$$2\sin\theta\ \left(\sin\theta\ -1\right)-1\left(\sin\theta\ -1\right)=0$$
$$\left(\sin\theta\ -1\right)\left(2\sin\theta\ -1\right)=0$$
$$\sin\theta\ -1=0$$ or  $$2\sin\theta\ -1=0$$
$$\sin\theta\ =1$$ or  $$\sin\theta\ =\frac{1}{2}$$
$$\theta\ =90^{\circ\ }$$ or  $$\theta\ =30^{\circ\ }$$
Given, $$0^\circ < \theta < 90^\circ$$
$$\Rightarrow$$Â Â $$\theta\ =30^{\circ\ }$$
$$\frac{1}{\sqrt{\sec\theta-\tan\theta}}=\frac{1}{\sqrt{\sec30^{\circ\ }-\tan30^{\circ\ }}}$$
$$=\frac{1}{\sqrt{\frac{2}{\sqrt{3}}\ -\frac{1}{\sqrt{3}}}}$$
$$=\frac{1}{\sqrt{\frac{1}{\sqrt{3}}}}$$
$$=\sqrt[\ 4]{3}$$
Hence, the correct answer is Option A
Create a FREE account and get: