Question 56

If $$a^2 + b^2 = 99  and  ab = 11, (a > 0, b > 0)$$ then the value of $$(a^3 + b^3)$$ is:

Solution

$$a^2 + b^2 = 99  and  ab = 11$$

$$(a^3 + b^3)$$ = (a +b)$$(a^2 + b^2 - ab)$$

Hence we have to find a+b

$$a^2 + b^2 = 99 $$

$$a^2 + b^2 + 2ab= 99 + 22$$

$$(a + b)^2$$ = 121

  $$(a + b)^2$$  = $$11^2$$

a + b =11

Hence,

$$(a^3 + b^3) =11 \times (88) = 968$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App