If $$a^2 + b^2 = 99 and ab = 11, (a > 0, b > 0)$$ then the value of $$(a^3 + b^3)$$ is:
$$a^2 + b^2 = 99 and ab = 11$$
$$(a^3 + b^3)$$ = (a +b)$$(a^2 + b^2 - ab)$$
Hence we have to find a+b
$$a^2 + b^2 = 99 $$
$$a^2 + b^2 + 2ab= 99 + 22$$
$$(a + b)^2$$ = 121
 $$(a + b)^2$$ = $$11^2$$
a + b =11
Hence,
$$(a^3 + b^3) =11 \times (88) = 968$$
Create a FREE account and get: