If $$4 - 2 \sin ^2 \theta - 5 \cos \theta = 0, 0^\circ < \theta < 90^\circ$$, then the value of $$ \sin \theta + \tan \theta$$ is:
$$4 - 2 \sin ^2 \theta - 5 \cos \theta = 0$$
Using the equation ,
$$ \sin ^2 \theta +Â \cos ^2 \theta = 1$$ , in above equation ,
$$4 - 2 (1 -Â \cos ^2 \theta) - 5 \cos \theta = 0$$
$$4 - 2 +Â Â 2\cos ^2 \theta - 5 \cos \theta = 0$$
$$2\cos ^2 \theta - 5 \cos \theta +2 = 0$$
$$\cos\theta = \frac{5 \pm \sqrt{25 -16}}{4}$$
$$\cos\theta = \frac{5 \pm 3}{4}$$
$$\cos\theta = 2 or \frac{1}{2}$$
$$\cos\theta can't be more than 1, so \cos\theta=\frac{1}{2}$$
$$\sin\theta =Â \frac{\sqrt{3}}{2}$$
$$\tan\theta =Â \sqrt{3}$$
$$ \sin \theta + \tan \theta =Â \frac{\sqrt{3}}{2} +Â \sqrt{3} =Â \frac{3\sqrt{3}}{2}$$
So , the answer would be Option b)$$\frac{3\sqrt{3}}{2}$$.
Create a FREE account and get: