For any set S, let n(S) denote the number of elements in S. For $$A \subseteq S$$, let $$A^1$$ denotes set S-A. If A, B, C are three sets such that n(A) = 80, n(B) = 46, n(c) = 38, $$n(A \cap B \cap C^1) = 20, n(B \cap C \cap A^1) = 9, n(C \cap A \cap B^1) = 13$$. If $$n(A \cap B \cap C) = 1$$, then $$n(A \cup B \cup C) = $$
Create a FREE account and get: