Question 53

What is the value of $$\frac{\frac{2}{3}  of  \frac{9}{4} + \frac{1}{2} \div \frac{5}{4}}{1 - \frac{1}{3} + \frac{1}{4} \times \left(1 + \frac{1}{3}\right)}$$?

Solution

firstly solve bracket than apply bodmass rule

$$\frac{\frac{2}{3}  of  \frac{9}{4} + \frac{1}{2} \div \frac{5}{4}}{1 - \frac{1}{3} + \frac{1}{4} \times \left(1 + \frac{1}{3}\right)}$$

$$\frac{\frac{3}{2}+ \frac{1}{2} \div \frac{5}{4}}{\frac{2}{3} + \frac{1}{4} \times \frac{4}{3}}$$

$$\frac{\frac{3}{2}+ \frac{2}{5}}{\frac{2}{3} + \frac{1}{4} \times \frac{4}{3}}$$

$$\frac{\frac{3}{2}+ \frac{2}{5}}{\frac{2}{3} + \frac{1}{3}}$$

$$\frac{19}{10}$$





Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App