As per the given question,
$$\Rightarrow \sec \theta - \tan \theta = P$$
$$\Rightarrow \dfrac{1}{\cos \theta} - \dfrac{\sin \theta}{\cos\theta} = P$$
$$\Rightarrow \dfrac{1-\sin \theta}{\cos \theta} = P$$
Squaring both side of the given equation,
$$\Rightarrow \dfrac{(1-\sin \theta)^2}{(\cos \theta)^2} = P^2$$
$$\Rightarrow \dfrac{(1-\sin \theta)^2}{1-\sin^2\theta} = P^2$$
$$\Rightarrow \dfrac{(1-\sin \theta)^2}{(1-\sin\theta)(1+\sin\theta)} = P^2$$
$$\Rightarrow \dfrac{(1-\sin \theta)}{(1+\sin\theta)} = P^2$$
$$\Rightarrow 1-\sin \theta = P^2(1+\sin\theta)$$
$$\Rightarrow 1-\sin \theta = P^2+P^2\sin\theta$$
$$\Rightarrow \sin\theta(P^2+1)=1-P^2$$
$$\Rightarrow \sin\theta=\dfrac{1-P^2}{(P^2+1)}$$
Hence $$\cosec \theta=\dfrac{P^2+1}{1-P^2}$$
Create a FREE account and get: