The centroid of an equilateral $$\triangle$$XYZ is L. If XY = 12 cm, then the length of XL (in cm), is:
In the equilateral traingle XYZ, Â XY = 12 cm
$$\Rightarrow$$Â YZ = XZ = 12 cm
The median XP bisects YZ at P and also perpendicular to YZ in the equilateral triangle.
$$\Rightarrow$$ YP = PZ = 6 cm  and XP$$\bot\ $$YZ
The centroid L divides the median XP in the ratio of 2 : 1
$$\Rightarrow$$ XL : PL = 2 : 1
$$\Rightarrow$$ XL = 2PL .............(1)
In $$\triangle$$XPZ,
XP$$^2$$ + PZ$$^2$$ = XZ$$^2$$
$$\Rightarrow$$ XP$$^2$$ + 6$$^2$$ = 12$$^2$$
$$\Rightarrow$$Â XP$$^2$$ + 36 = 144
$$\Rightarrow$$Â XP$$^2$$ = 108
$$\Rightarrow$$Â XP =Â $$6\sqrt{3}$$
$$\Rightarrow$$Â XL + PL =Â $$6\sqrt{3}$$
$$\Rightarrow$$Â 2PL + PL = $$6\sqrt{3}$$
$$\Rightarrow$$Â 3PL =Â $$6\sqrt{3}$$
$$\Rightarrow$$Â PL =Â $$2\sqrt{3}$$
$$\Rightarrow$$Â XL = 2PL =Â $$4\sqrt{3}$$
Hence, the correct answer is Option C
Create a FREE account and get: