HCF and LCM of two numbers p and q is A and B respectively, if A + B = p + q, then the value of $$A^3 + B^3$$ is:
As we know,Â
$$L.C.M\times\ H.C.F=product\ of\ numbers$$
So, $$A\times\ B=p\times\ q$$..........(i)
But A + B = p + q (given)........(ii)
As we know,Â
$$A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)$$
$$A^3+B^3=\left(A+B\right)\left(\left(A+B\right)^2-3AB^{ }\right)$$
So,
$$A^3+B^3=\left(p+q\right)\left(\left(p+q\right)^2-3pq\right)$$
So,Â
$$A^3+B^3=p^3+q^3$$
Hence, Option A is correct.Â
Create a FREE account and get: