Question 51

Two articles are sold for ₹ 4,956 each. On one,the seller gains 18% and on the other he loses 16%. What is his overall gain or loss percent to nearest one decimal place??

Solution

Let the cost price of the first article is x and the cost price of the second article is y.

Given that, sold price of the article=4956Rs, gain =18% and loss =16%.

$$gain=\dfrac{SP -CP }{CP}$$

$$\Rightarrow 18=\dfrac{(4956 -x)\times 100 }{x}$$

$$\Rightarrow 18x=4956\times 100-100x$$

$$\Rightarrow 18x+100x=4956\times 100$$

$$\Rightarrow 118x=4956\times 100$$

$$\Rightarrow x=\dfrac{4956\times 100}{118}=4200$$Rs.

gain amount$$=4956-4200=756$$Rs.

Similearly,

$$loss=\dfrac{CP-SP }{CP}$$

$$\Rightarrow 16=\dfrac{(y-4856)\times 100 }{y}$$

$$\Rightarrow 16y=100y-4956\times 100$$

$$\Rightarrow 100y-16y=4956\times 100$$

$$\Ritghtarrow 84y=4956\times 100$$

$$\Rightarrow y=\dfrac{4956\times 100}{84}=5900$$Rs.

Hence, net loss amount =$$5900-4956=944$$Rs

Hence the required percentage$$=\dfrac{(944-756)\times 100}{10100}=\dfrac{188 \times 100}{10100}=1.9\%$$loss


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App