Question 51

The value of $$\frac{1 - 2 \sin^2 \theta \cos^2 \theta}{\sin^4 \theta + \cos^4 \theta} - 1$$ is:

Solution

$$\frac{1 - 2 \sin^2 \theta \cos^2 \theta}{\sin^4 \theta + \cos^4 \theta} - 1$$

= $$\frac{1 - 2 \sin^2 \theta \cos^2 \theta - \sin^4 \theta - \cos^4 \theta}{\sin^4 \theta + \cos^4 \theta}$$

= $$\frac{1 - (sin^2 \theta + \cos^2 \theta)^2 }{\sin^4 \theta + \cos^4 \theta}$$

= $$\frac{1 - 1}{\sin^4 \theta + \cos^4 \theta}$$ = 0


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App