Let $$\theta, \phi \in [0, 2 \pi]$$ be such that
$$2 \cos \theta (1 - \sin \phi) = \sin^2 \theta \left(\tan \frac{\theta}{2} + \cot \frac{\theta}{2}\right) \cos \phi - 1, \tan(2 \pi - \theta) > 0$$ and $$-1 < \sin \theta < -\frac{\sqrt{3}}{2}$$. Then $$\phi$$ cannot satisfy
Create a FREE account and get: