Question 46

If 2x - 2(3 + 4x) < -1 - 2x < -5/3 - x/3; then x can take which of the following values?

Solution

Expression 1 : $$-1 - 2x$$ < $$\frac{-5}{3} - \frac{x}{3}$$

=> $$3 + 6x$$ < $$5 + x$$

=> $$6x - x$$ < $$5 - 3$$

=> $$x$$ < $$\frac{2}{5}$$ ----------(i)

Expression 2 : $$2x - 2(3 + 4x) < -1 - 2x$$

=> $$-6x - 6$$ < $$-1 - 2x$$

=> $$6x - 2x$$ > $$1 - 6$$

=> $$x$$ > $$\frac{-5}{4}$$ ------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{-5}{4}$$ < $$x$$ < $$\frac{2}{5}$$

Thus, only value that $$x$$ can take among the options = -1

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App