For a real number $$\alpha$$, if the system $$\begin{bmatrix}1 & \alpha & \alpha^2 \\\alpha & 1 & \alpha\\\alpha^2 & \alpha & 1 \end{bmatrix}\begin{bmatrix}x\\y\\z \end{bmatrix} = \begin{bmatrix}1\\-1\\1 \end{bmatrix}$$ of linear equations, has infinitely many solutions, then $$1+ \alpha + \alpha^2 =$$
Correct Answer: 1
Create a FREE account and get: