Edit MetaData
Let a, b, x and y be real numbers such that a - b = 1 and $$y \neq 0$$. If the complex number z = x + iy satisfies $$IM\left(\frac{az + b}{z+1}\right) = y$$, then which of the following is(are) possible value(s) of x?
$$-1 + \sqrt{1 - y^2}$$
$$-1 - \sqrt{1 - y^2}$$
$$1 + \sqrt{1 + y^2}$$
$$1 - \sqrt{1 - y^2}$$
Create a FREE account and get:
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Day-wise Structured & Planned Preparation Guide
By proceeding you agree to create your account
Free CAT Schedule PDF will be sent to your email address soon !!!
Join cracku.in for Expert Guidance.