If $$a$$ is positive and $$a^2 + \frac{1}{a^2} = 7,$$ then $$a^3 + \frac{1}{a^3} = ?$$
$$a^2 + \frac{1}{a^2} = 7$$
Addition 2 in both sides of equation.
$$a^2 + \frac{1}{a^2} + 2 = 7+2$$
$$a^2 + \frac{1}{a^2} + 2 = 9$$Â Â Eq.(1)
Eq.(1) is making the formula of $$(a+\frac{1}{a})^{2}$$.
After removing the square got $$(a+\frac{1}{a}) =Â \pm 3$$
In question, it is mentioned that value of a is positive.
So $$(a+\frac{1}{a}) = 3$$  Eq.(2)
In Eq.(2) apply formula $$(a+\frac{1}{a})^{3}$$.
So $$(a+\frac{1}{a})^{3} = a^{3} + (\frac{1}{a})^{3} + 3 \times a \times (\frac{1}{a}) [a + \frac{1}{a}]$$
$$(a+\frac{1}{a})^{3} = a^{3} + (\frac{1}{a})^{3} + 3[a + \frac{1}{a}]$$Â Â Eq.(3)
Put Eq.(2) in Eq.(3).
$$(3)^{3} = a^{3} + (\frac{1}{a})^{3} + 3\times3$$
$$27 = a^{3} + (\frac{1}{a})^{3} + 9$$
$$27-9 = a^{3} + (\frac{1}{a})^{3}$$
$$18 = a^{3} + (\frac{1}{a})^{3}$$
$$a^{3} + (\frac{1}{a})^{3} = 18$$
Create a FREE account and get: