Sign in
Please select an account to continue using cracku.in
↓ →
Given that $$\cos x + \cos y = 1$$, the range of $$\sin x - \sin y$$ is
Given,
$$\cos x + \cos y = 1$$
Squaring both sides, $$\cos^2x+\cos^2y+2\cos x\cos y=1$$
or, $$1-\sin^2x+1-\sin^2y+2\cos x\cos y=1$$
or, $$1+2\cos x\cos y=\sin^2x+\sin^2y$$
Adding $$-2\sin x\sin y$$ on both sides,
$$1+2\cos x\cos y-2\sin x\sin y=\sin^2x+\sin^2y-2\sin x\sin y$$
or, $$1+2\cos\left(x+y\right)=\left(\sin x-\sin y\right)^2$$
Now, the maximum value of $$\cos\left(x+y\right)$$ can be 1
So, the maximum value of $$\left(\sin x-\sin y\right)^2$$ will be $$1+2\times\ 1=3$$
So, the maximum and minimum possible values of $$\sin x-\sin y$$ will be $$\sqrt{\ 3}$$ and $$-\sqrt{\ 3}$$ respectively
So, the range of $$\sin x-\sin y$$ is $$[-\surd{3}, \surd{3}]$$
Create a FREE account and get: